Центр вписанного в треугольник круга

Центр вписанного в треугольник круга

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

    $$ , где S — площадь треугольника, а $$p =frac<2>$$ — полупериметр треугольника.

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

  • Вокруг любого треугольника можно описать окружность, и только одну.
  • В любом треугольнике сторона равна произведению диаметра описанной окружности и синуса противолежащего угла.
  • Площадь треугольника равна отношению произведения длин всех его сторон к учетверенному радиусу окружности, описанной около этого треугольника: $$R =frac<4S>$$, где S — площадь треугольника.
  • Центр вневписанной окружности лежит на пересечении биссектрис внешних углов, при вершинах касаемой стороны, и биссектрисы угла при третей вершине.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

  • Центр описанной окружности совпадает с серединой гипотенузы.
  • Радиус равен половине гипотенузы: $$R = frac<2>$$.
  • Радиус равен медиане, проведенной к гипотенузе: $$R = m_$$.

Четырехугольник, вписанный в окружность

  • Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + eta + gamma +delta = 180^circ$$.
  • Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
  • Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
  • Площадь: $$S = sqrt<(p-a)(p-b)(p-c)(p-d)>$$, где $$p = frac<2>$$ — полупериметр четырехугольника.

Окружность, вписанная в ромб

  • В любой ромб можно вписать окружность.
  • Радиус r вписанной окружности: $$r = frac<2>$$, где h — высота ромба или $$r = frac <1>cdot d_<2>><4a>$$, где a — сторона ромба, d1 и d2 — диагонали ромба.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Вписанная окружность

Здесь мы будем говорить об окружностях, связанных с треугольником. Оставим пока в стороне страшное слово «вневписанная» и поговорим об окружности, вписанной в треугольник. Итак, что же это такое?

Окружность называется вписанной в треугольник, если она касается всех (трёх) его сторон.

Для всякого ли треугольника можно подобрать такую окружность? И как найти ее центр?

На эти вопросы отвечает следующая теорема (математически называют очень важные утверждения теоремами)

Во всякий треугольник можно вписать окружность, причём единственным образом.
Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.

И повторим ещё раз то, что очень нужно запомнить.

Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.

Если тебя заинтересовал вопрос, а почему это все три биссектрисы обязаны пересечься, и какое отношение имеют биссектрисы к тому, что окружность касается сторон треугольника, то добро пожаловать к темам «Биссектриса».

Но для начала хватит просто запомнить то, что центр вписанной окружности лежит на пересечении биссектрис углов треугольника.

Теперь немножко о радиусе.

Посмотри, пусть у нас в вписана окружность с центром . Тогда отрезки , , и – радиусы этой окружности.

Поэтому они, конечно же, равны, но ещё – они все перпендикулярны сторонам. Это происходит оттого, что радиус, проведенный в точку касания, перпендикулярен касательной. Итак, запомни и используй:

Радиусы вписанной окружности, проведенные в точки касания, перпендикулярны сторонам треугольника.

Что же ещё? Давай представим, что мы откуда-то узнали все три стороны треугольника.

Можно ли найти как-то отрезочки , , и.д. — отрезки, на которые точки касания разбивают стороны треугольника? Представь себе, можно, и даже очень легко. Для этого нужно знать только то, что отрезки касательных, проведённых из одной точки, равны (если ещё не успел это узнать – загляни в тему «Касательные, касающиеся окружности»).

Итак, начнём поиск!

Посмотри внимательно: из точки проведено две касательных, значит их отрезки и равны.

Мы обозначим их « ». Далее, точно так же:
(обозначили).
(обозначили).

Теперь вспомним-ка, что мы знаем длины всех трёх сторон треугольника. Обозначим эти длины « », « », « » — смотри на рисунок. Что же теперь получилось? А вот, например, отрезок « » состоит из двух отрезков « » и « », да и отрезки « » и « » тоже из чего-то состоят. Запишем это всё сразу:

Ух ты! Выход в алгебру! Три уравнения и три неизвестных! Сейчас решим!

Сложим первые два уравнения и вычтем третье:

А теперь сложим первое и третье уравнение и вычтем второе:

И последний шаг: сложим второе и третье, а потом вычтем первое.

Ну вот, всё нашли:

Очень много плюсов и минусов – аж в глазах рябит. Как же это запомнить? А оказывается, очень просто. Смотри-ка на картинку и формулу сразу.

Секрет вот в чём: те стороны, на которых есть « » (« » и « ») будут с плюсом, а та сторона, где нет « » (это « »), будет с минусом. Ну, а пополам поделить всё хозяйство. С другими буквами точно так же

На « » и « » есть « » — они с плюсом, на « » нет « » — она с минусом

На « » и « » есть « » — они с плюсом, на « » нет « » — она с минусом.

Вписанная окружность и площадь

Здесь скажем совсем коротко:

Есть такая формула:

где — это полупериметр треугольника, то есть , а — радиус вписанной окружности.

Вневписанная окружность

Ну вот, пора приступать к самому непонятному. Что же это за зверь такой: «вневписанная окружность»? Сначала посмотри на картинку:

Видишь, окружность тоже чего-то касается, но «сидит» как-то снаружи, вне треугольника? Вот поэтому и называется вневписанной.

Окружность называется вневписанной для треугольника, если она касается ОДНОЙ стороны треугольника и продолжений двух других сторон.

А как ты думаешь, сколько у одного треугольника может быть вневписанных окружностей? Вот, представь себе, аж три!

Посмотри, вот, так:

Захватывает дух? Насладись впечатлением. Подробное обсуждение этой картинки смотри в следующих уровнях теории. Там ответим на всякие вопросы, типа

— A откуда взялся ?

— A что это за точка ?

— И что это вообще за тьма линий на рисунке?

А сейчас вернёмся к одной, какой-нибудь, вневписанной окружности и узнаем всего один, но очень важный факт.

или, что то же самое: , где — полупериметр.

Доказывать не будем, но ещё раз посмотри и запомни:

до «дальней» точки касания вневписанной окружности – ровно полупериметр.

ВПИСАННАЯ И ВНЕВПИСАННАЯ ОКРУЖНОСТЬ

Вписанная в треугольник окружность — окружность, которая касается всех (трёх) сторон треугольника.

Теорема: В любой треугольник можно вписать окружность, причём единственным образом.

  • Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.
  • Радиусы вписанной окружности , проведенные в точки касания, перпендикулярны сторонам треугольника:
  • Отрезки от вершин треугольника до точек касания выражаются по формулам:

Площадь треугольника через радиус вписанной окружности: , где — полупериметр треугольника, а — радиус вписанной окружности.

Вневписанная окружность — окружность, которая касается одной стороны треугольника и продолжений двух других сторон.

  • Центр вневписанной окружности лежит на пересечении биссектрисы внутреннего угла треугольника ( ) и биссектрис двух внешних углов ( и ).

Площадь треугольника через радиус вневписанной окружности : , где — полупериметр треугольника, а — радиус вневписанной окружности.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене "чашка кофе в месяц",

А также получить бессрочный доступ к учебнику "YouClever", Программе подготовки (решебнику) "100gia", неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Пример

В приведенном ниже примере, O является центров окружности.

Метод расчета центра окружности вписанного в треугольник

Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.

Шаг 1 :

Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y

  • Средняя точка стороны = x1+x2/2, y1+y2/2
  • Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
  • Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
  • Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)

Шаг 2 :

Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.

  • Угол AB (m) = 6-7/6-5 = -1.
  • Угол BC (m) = -2-6/2-6 = 2.
  • Угол CA (m) = 7+2/5-2 = 3.

Шаг 3 :

Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.

  • Угол биссектрисы = -1/угол линии (стороны).
  • Угол биссектрисы стороны AB = -1/-1 = 1
  • Угол биссектрисы стороны BC = -1/2
  • Угол биссектрисы стороны CA = -1/3

Шаг 4 :

После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.

Уравнение центра окружности y-y1 = m(x-x1)

Упростив, мы получим уравнение -x + y = 1

Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.

Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)

Упростив, мы получим уравнение x + 2y = 8

Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)

Упростив, мы получим уравнение x + 3y = 11

Шаг 5 :

Найдем значения x и y решив любые 2 из указанных 3 уравнений.

В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.

Читайте также:  Фотоаппарат с передачей по wifi
Ссылка на основную публикацию
Характеристики процессора интел пентиум 4
Количество ядер - 1. Благодаря технологии Hyper-Threading, количество потоков 2, что вдвое больше числа физических ядер и увеличивает производительность многопоточных...
Сканер ricoh sp 220snw
Компания Ricoh — далеко не новичок на рынке печатающих устройств. Это глобальная корпорация со штаб-квартирой в Токио и представительствами во...
Сколько дают на ютубе за 1000 просмотров
Многих пользователей YouTube, а также начинающих видеоблогеров справедливо интересует вопрос: «А сколько YouTube платит за тысячу или миллион просмотров?» Если...
Хлебопечка мулинекс ow1101 инструкция и рецепты
Инструкция MOULINEX OW 1101 на русском языке в формате pdf для устройства: хлебопечь. Прочитайте инструкцию для ознакомления с функциями и...
Adblock detector