Скорость радиоволны и скорость света

Скорость радиоволны и скорость света

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году. На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с , или 1 079 252 848,8 км/ч . Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды [3] . Для решения школьных задач и разного рода оценок, не требующих большой точности, обычно используют значение 300 000 000 м/с ( 3×10 8 м/с ).

В природе со скоростью света распространяются (в вакууме):

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света, но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом).

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой) [4] . (Подробнее см. Сверхсветовое движение, также соответствующий раздел данной статьи ниже).

В прозрачной среде

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде ( λ = c/ν ). Эта скорость обычно (но не обязательно) меньше c . Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды. Групповая скорость света в равновесной среде всегда меньше c . Однако в неравновесных средах она может превышать c . При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной [5] . В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты . Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) невозможно, так как это нарушило бы фундаментальный принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами, движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, никакое физическое взаимодействие не может распространяться быстрее скорости света. Из этого следует, что тахионы не нарушают принцип причинности — с обычными частицами они никак не взаимодействуют, а разность их скоростей также не достигает скорости света.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года появляются сообщения о том, что в так называемом эффекте квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана — сверхсветовая скорость при туннельном эффекте. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества [6] .

В результате обработки данных эксперимента OPERA [7] , набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино [8] . Сообщение об этом сопровождалось публикацией в архиве препринтов [9] . Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино [10] . В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили [11] [12] . В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля) [13] .

Читайте также:  Как выпрямить шнур наушников

В культуре

В фантастическом рассказе «Светопреставление» Александр Беляев описывает ситуацию, когда скорость света снижается до нескольких метров в секунду.

Открытие радиоволн дало человечеству массу возможностей. Среди них: радио, телевидение, радары, радиотелескопы и беспроводные средства связи. Всё это облегчало нам жизнь. С помощью радио люди всегда могут попросить помощи у спасателей, корабли и самолёты подать сигнал бедствия, и можно узнать происходящие события в мире.

Создание электромагнитных волн опытным путём принадлежит физику Герцу. Для этого Герц использовал высокочастотный искровой разрядник (Вибратор). Произвёл этот опыт Герц в 1888 г. Состоял вибратор из двух стержней, разделённых искровым промежутком. Экспериментировал Герц с волнами частотой 100000000 Гц. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле υ=λν.Она оказалась приближенно равна скорости света: с=300000 км/с.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.

Самый простой случай — это распространение радиоволны в свободном пространстве. Уже на небольшом расстоянии от радиопередатчика его можно считать точкой. А если так, то фронт радиоволны можно считать сферическим. Если мы проведем мысленно несколько сфер, окружающих радиопередатчик, то ясно, что при отсутствии поглощения энергия, проходящая через сферы, будет оставаться неизменной. Ну, а поверхность сферы пропорциональна квадрату радиуса. Значит, интенсивность волны, т. е. энергия, приходящаяся на единицу площади в единицу времени, будет падать по мере удаления от источника обратно пропорционально квадрату расстояния.

Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

С учётом особенностей распространения, генерации и (отчасти) излучения весь диапазон радиоволн принято делить на ряд меньших диапазонов: сверхдлинные волны, длинные волны, средние волны, короткие волны, метровые волны, дециметровые волны, сантиметровые волны, миллиметровые волны и субмиллиметровые волны (табл. 1). Деление радиочастот на диапазоны в радиосвязи установлено международным регламентом радиосвязи (табл. 2). Все это официальные, четко отграниченные участки спектра.
В то же время термин "диапазон" в зависимости от контекста может применяться для обозначения какого-то произвольного участка радиоволн/радиочастот (например — "любительский диапазон", "диапазон подвижной связи", "диапазон low band", "диапазон 2,4 ГГц" и т.п.)

Табл. 1. — Деление всего диапазона радиоволн на меньшие диапазоны.

Название поддиапазона Длина волны, м Частота колебаний, гц
Сверхдлинные волны более 10 4 м менее 3×10 4
Длинные волны 10 4 —10 3 м 3×10 4 —3×10 5
Средние волны 10 3 —10 2 м 3×10 5 —3×10 6
Короткие волны 10 2 —10 м 3×10 6 —3×10 7
Метровые волны 10—1 м 3×10 7 —3×10 8
Дециметровые волны 1—0,1 м 3×10 8 —3×10 10
Сантиметровые волны 0,1—0,01 м 3×10 10 —3×10 11
Миллиметровые волны 0,01—0,001 3×10 11 —6×10 12
Субмиллиметровые волны 10 +3 —5×10 +5 — — — — — — — — — — — — — —

Табл. 2.1. — Диапазон радиочастот

Наименование диапазона Границы диапазонов
основной термин параллельный термин
1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот
Крайне низкие КНЧ
Сверхнизкие СНЧ
Инфранизкие ИНЧ
Очень низкие ОНЧ
Низкие частоты НЧ
Средние частоты СЧ
Высокие частоты ВЧ
Очень высокие ОВЧ
Ультравысокие УВЧ
Сверхвысокие СВЧ
Крайне высокие КВЧ
Гипервысокие ГВЧ
3—30 гц
30—300 гц
0,3—3 кгц
3—30 кгц
30—300 кгц
0,3—3 Мгц
3—30 Мгц
30—300 Мгц
0,3—3 Ггц
3—30 Ггц
30—300 Ггц
0,3—3 Тгц

Табл. 2.2. — Диапазон радиоволн

Наименование диапазона Границы диапазонов
основной термин параллельный термин
1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот
Декамегаметровые
Мегаметровые
Гектокилометровые
Мириаметровые
Километровые
Гектометровые
Декаметровые
Метровые
Дециметровые
Сантиметровые
Миллиметровые
Децимиллиметровые
100—10 мм
10—1 мм
1000—100 км
100—10 км
10—1 км
1—0,1 км
100—10 м
10—1 м
1—0,1 м
10—1 см
10—1 мм
1—0,1 мм
Читайте также:  Служба поддержки клиентов триколор

Динамический диапазон
Динамический диапазон радиоприемного устройства — это отношение максимально допустимого уровня принимаемого сигнала (нормируется уровнем нелинейных искажений) к минимально возможному уровню принимаемого сигнала (определяется чувствительностью устройства) выраженное в децибелах. Другими словами — это разность между максимальным и минимальным значениями уровней сигналов, при которых еще не наблюдается искажений. Причиной этих искажений является нелинейность усилительного тракта рассматриваемого устройства. Чем шире ДД, тем более сильные сигналы способно принимать устройство без искажений. Динамический диапазон шире у дорогих приемников, хотя сравнивать их по этому параметру практически невозможно, т.к. он очень редко указывается в характеристиках.

Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Радиоизлучение Солнца.Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м. Особенно сильно излучение в метровом диапазоне; оно рождается в верхних слоях атмосферы Солнца, в его короне, где температура порядка 1 млн. К. Коротковолновое излучение Солнца относительно слабо; оно выходит из хромосферы, расположенной над видимой поверхностью Солнца – фотосферой.

© Copyright — Karim A. Khaidarov, November 12, 2007

О СКОРОСТИ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Светлой памяти моей дочери Анастасии посвящаю

Рассмотрены причины искажения представлений о природе электромагнитных волн, сложившиеся в современной физике. Дано объяснение наблюдаемым фактам с точки зрения физики эфира. Описан эксперимент автора, показывающий вариабельность скорости электромагнитной волны в эфире.

“ Щит и ограждение — Истина Его”
[Пс. 90]

К сожалению, с 1905 года, когда в физике воцарился релятивизм, и физики уверовали в его постулаты, целое столетие теоретическая физика шла ошибочным путем. Отрицая наличие физического носителя электромагнитных волн, и постулируя предельность, постоянство и независимость скорости света, релятивисты тщательно вуалировали или полностью исключали из рассмотрения факты, противоречащие постулатам релятивизма. В результате произошло торможение развития всех направлений физики и новых технологий, которые не укладываются в прокрустово ложе релятивизма.

Физическая реальность, однако, пробивает себе путь через новые и новые факты, физические явления и успехи технологий, игнорирующих неоправданные постулаты релятивизма. Окончательное развенчание мифов релятивизма будет способствовать освобождению рассудка исследователей и инженеров от тех препон, которые мешают им в создании новых технологий и в познании природы. Именно такая цель поставлена автором настоящей работы, который не только предлагает читателям критику постулатов релятивизма и релятивистских толкований физических явлений, но и простой эксперимент по опровержению главного постулата релятивизма – постоянства скорости света в свободном от вещества пространстве.

Мифы релятивизма об электромагнитных волнах

Миф отсутствия носителя электромагнитных волн родился из слабого владения логикой и незнания физики.

Исторически первым поводом возникновения мифа “беспочвенности” электромагнитных волн явился некорректно поставленный эксперимент Альберта Майкельсона по обнаружению эфира, и нелогичный вывод из него [1].

Некорректность эксперимента Майкельсона заключается, как минимум, в следующем.

1. В эксперименте измерялась вариабельность интерференционной картины (сдвиг вертикальных полос), создаваемой стоячей электромагнитной волной в неподвижной относительно лаборатории установке (интерферометре). Так как установка была неподвижной относительно лаборатории, а значит относительно вещества, окружающего установку, а значит и носителя этой материи – эфира, то ожидать каких-либо изменений было бы нелогично.

2. Если предполагать, что эфир (одна из его компонент) движется независимо от вещества лаборатории и Земли, то было бы необходимо рассматривать именно эту компоненту в качестве носителя электромагнитного поля. Однако в последнем предположении также мало логики, так как различные электромагнитные явления, такие как индукция, имеют лабораторию в качестве нулевой точки отсчета.

В дальнейшем, под влиянием вывода Майкельсона в умах ученых, особенно тех, кто склонен к спекулятивным математическим построениям, созрела мысль о построении физики без эфира, то есть без физического носителя полей.

Дело в том, что реально любая физическая волна (звук, морские волны, сейсмические волны, волны тепла и пр.) есть волнение физической среды, а без последней понятие волны теряет свой физический и даже логический смысл. Когда математики абстрагируются от физического поля (среды), распределением которого являются волновые функции, они получают лишь “кусочный” фрагмент процесса или явления, не замкнутый в корректное логическое поле, так, что возможны сюрреалистические, неоднозначные спекулятивные построения любого произвольного толка. Чтобы понять это, достаточно задать себе вопрос: — распределением чего является рассматриваемая функция? Если это распределение “ничего”, тогда и оно само представляет собой “ничто”, то есть физически несуществующий объект, некорректно построенный в мозгу. Таким образом, релятивистская электромагнитная волна, являясь распределением “ничего” в “ничем” не является объектом физики.

В дальнейшем, как А. Эйнштейн, “автор” СТО, так и другие релятивисты, например, Поль Дирак, сделали попытку отойти от пустого, физически бессодержательного пространства, перейдя ко всяким моделям “полу-эфира”, “физического вакуума”, наполненного “морем виртуальных частиц”. Однако такой ход является научно и просто логически неправомерным. Если пространство не является пустым, то нет места никакому релятивизму. Если истинен релятивизм, то нет места никаким “физическим вакуумам”.

Миф постоянства скорости света в свободном пространстве появился в умах физико-математиков Х. Лоренца [3], А. Пуанкаре [4], А. Эйнштейна [5], пытавшихся объяснить эксперимент Майкельсона с позиций релятивизма и развивавших идею о распространении электромагнитных волн в вакууме, как совершенно пустом пространстве. Однако, все они, видимо, не были в курсе физического факта, открытого в том же 1887 году русским астрофизиком А. А. Белопольским [6]. Известный уже в то время основатель астроспектроскопии Аристарх Аполлонович Белопольский открыл, что спектр света сдвигается вблизи абсолютно ярких звезд, что может означать лишь одно – скорость электромагнитной волны меняется от каких-то свойств физической среды. Из основ классической физики мы знаем, что скорость физической волны определяется упругостью и инерцией среды, волнением которой она является.

Было бы естественным предположить, что вблизи ярких звезд меняется температура этой среды (эфира), что меняет ее плотность [15]. Однако, решив, что “природа любит простоту” (Анри Пуанкаре), релятивисты игнорировали и игнорируют открытие Белопольского, считая, что “если факт не соответствует теории, — тем хуже для факта” (А. Эйнштейн).

Читайте также:  Оф лайн формат это

Миф о космической плазме возник как попытка увязать обнаруженное более 30 лет назад явление межзвездной дисперсии электромагнитных волн с релятивизмом, когда была найдена разница в моменте прихода света и радиоимпульсов пульсаров. Ясно, что, имея широкий спектр излучения, – от рентгена до радио первоначальный импульс излучения пульсара претерпевает “расслоение”, временную дисперсию в связи с разницей скоростей высокочастотных и низкочастотных волн.

Релятивисты не могли признать дисперсию как атрибут среды – носителя. Это означало бы крах теории относительности. В связи с этим был сочинен миф о существовании горячей плазмы, равномерно рассеянной в космическом пространстве.

Миф о космической плазме неприемлем по следующим причинам:

термодинамически невозможно длительное существование горячей сверх разреженной плазмы в холодном космосе. Такая плазма должна быстро остыть до 3°K за счет излучения тепла в холодное пространство.

если плазма образуется за счет истечения от небесных тел, то она должна быть клочковатой и вызывать модуляцию величины временной дисперсии, чего на само деле не наблюдается. Наблюдаются лишь мерцание света пульсаров и спорадическая модуляция амплитуды сигнала, что объяснимо наличием межзвездной пыли.

Эфир – среда-носитель электромагнитных волн

Эфир, как и другие физические среды, обладает плотностью, вязкостью, поглощением, диэлектрической проницаемостью (8.854·10 -12 F/m), магнитной проницаемостью (1.257·10 -6 H/m), волновым сопротивлением (377 Ом), температурой (2.72ºK).

Рассматривая вопрос о плотности эфира поверхностно, руководствуясь привычными предрассудками, не стоит иронизировать по поводу плотности эфира, 2.818 [kg/m 3 ], найденной автором [7].

На самом деле это не гравитационная плотность, как у вещества, а инерционная плотность, как у физических полей, в том числе света, точно в том смысле, как понимал эту плотность ρ и ее связь с энергией E и скоростью света c Николай Алексеевич Умов, 1874 [8 — 12]:

dE / d ρ = c 2 [m 2 /s 2 ].

задолго до спекуляций 20-го века.

Как и обычное вещество, эфир обладает свойством температуры, которая в обычных условиях равна 2.72 ºK (найдено проф. Эрихом Регенером в 1933 году [13], а не Пензиасом и Вильсоном в 1964).

Соответственно, эфир имеет планковский спектр излучения черного тела.

Поглощение энергии световых квантов эфиром определяется процессом релаксации, возбуждения вынужденных колебаний его элементов – амеров проходящей через эту среду электромагнитной волной.

Временной коэффициент затухания, проявляющий себя на межгалактических расстояниях, известен, — это постоянная Хаббла

δ = H = 2.36·10 -18 [1/s]; γ = H/c = 7.888 ·10 -27 [1/m]

где H – постоянная Хаббла [1/s], γ – пространственный (погонный) коэффициент затухания [1/m]; c – скорость света [m/s].

С другой стороны коэффициент затухания волновых колебаний в газообразной среде, к каковым можно отнести свободный фазовый (электромагнитный) эфир, можно выразить как [14]

где ν – кинематическая вязкость среды; c – скорость распространения волн; ω — циклическая частота волн.

Из (1), (2) и формул, выведенных в [14] можно увидеть, что вязкость эфира для высоких частот есть функция частоты электромагнитных волн

Свойство (3) обеспечивает кажущееся отсутствие дисперсии вакуума в инфракрасном, оптическом и ультрафиолетовом диапазонах. Падение вязкости с частотой полностью компенсируется таким же возрастанием циклов поглощения, диссипации энергии кванта, и дисперсия оптических волн в эфире не наблюдаема. Это делает эфирную среду “невидимой” в узком оптическом диапазоне, порождая релятивистскую мифологию.

Однако на более низких частотах, которыми являются радиоволны, дисперсия эфира наблюдаема, что выражается в межзвездной дисперсии.

В связи с уменьшением эффективной площади кванта с квадратом частоты, уровень диссипации энергии пропорционален второй степени разности частот волны и эфира. Зависимости этих двух факторов от частоты волны показаны на рисунке 1.

Рис. 1. Зависимости компонент рэлеевского рассеяния электромагнитных волн на эфире от их частоты
(1 – Планковский спектр излучения / поглощения эфира; 2 — изменение диэлектрической восприимчивости эфира; 3 – вязкость эфира; 4 – итоговая зависимость (поглощение для волн в эфире); 5 – оптический диапазон частот)

Коэффициент поглощения эфира как функция частоты, то есть фактически коэффициент диэлектрических потерь, будет определяться произведением его вязкости на диэлектрическую восприимчивость как и у любой другой диэлектрической среды

δ =α χ ν; α = const.

Рисунок 1 ясно демонстрирует, что ниже температуры (частоты) эфира T a , f a распространение электромагнитных волн в эфире является аналогом обычных звуковых волн, для которых эфир обладает константной вязкостью (коэффициентом внутреннего трения). Выше частоты f a электромагнитные волны являются аналогом гиперзвука и вязкость эфира падает с частотой.

Также, как фононы с энергией hf для гиперзвука, для электромагнитных волн в эфире с f > f a определяющую роль играют кванты с энергией hf .

Согласно закону Кирхгоффа, как видно из рисунка 1, планковское чернотельное излучение и поглощение эфира должно приводить к поглощению электромагнитных волн близких к 3·10 11 Hz (λ = 1 mm) на “космогонических” расстояниях. Оптическая толщина эфира D = c/H = 13.4 ·10 9 лет. То есть весь оптически наблюдаемый космос есть тонкий поверхностный слой толщи реальной Вселенной.

Межзвездная дисперсия электромагнитных волн на эфире

Реально эфир, как и любая физическая среда, откликается на внешнее воздействие, изменяя свои параметры. Однако в связи с уникальными величинами параметров эфира этот отклик чрезвычайно мал. Сказанное относится и к диэлектрической проницаемости эфира, которая в современной физике принята за константу. На самом деле ε эфира меняется под действием электрического поля, поэтому изменение оптической плотности среды, выраженное через диэлектрическую восприимчивость среды, можно определить как функцию напряженности электрического поля, создаваемого электромагнитной волной, то есть диэлектрическая восприимчивость эфира χ(ω) как функция частоты волны есть [14]

где P – поляризация среды (дипольный момент единицы объема, независящий от частоты); E (ω) – напряженность электрического поля.

Непредвзятый и внимательный анализ данных по межзвездной дисперсии показывает, что ее поведение описывается найденной автором закономерностью (4), а наблюдаемые отклонения от линейной зависимости меры дисперсии (DM) некоторых пульсаров определяются параметрами облака вещества, находящегося в процессе рассеяния после взрыва сверхновой.

Как показали исследования автора, диспергирующее влияние рассеянного сверхновой вещества (холодных электронов) на дисперсию радиоволн удовлетворительно описывается формулой

K form = exp( -t/T scat ) (1 — exp(- t/T form )

где T scat – постоянная времени рассеяния облака вещества; T form — постоянная времени формирования облака.

Автором найдены средние значения для параметров в (5): T scat = 1.2 млн. лет, T form = 5900 лет. Экспериментальные данные вписываются в эту модель с коэффициентом корреляции 0.9985, что демонстрирует рисунок 2 из [14] и таблица фактических значений частотно-временной дисперсии пульсаров, приведенные ниже.

Таблица 1. Параметры межзвездной дисперсии пульсаров.

Ссылка на основную публикацию
Сканер ricoh sp 220snw
Компания Ricoh — далеко не новичок на рынке печатающих устройств. Это глобальная корпорация со штаб-квартирой в Токио и представительствами во...
При каком альфа векторы компланарны
Единого обозначения компланарность не имеет. Свойства компланарности Пусть — векторы пространства . Тогда верны следующие утверждения: Если хотя бы один...
При каком значении m прямая параллельна плоскости
Точка C(—3, 4,1) найдена. 6. Написать уравнение плоскости, проходящей через точки M1(1, —2, 1), M2(4, 2, 3) и параллельной вектору...
Сколько дают на ютубе за 1000 просмотров
Многих пользователей YouTube, а также начинающих видеоблогеров справедливо интересует вопрос: «А сколько YouTube платит за тысячу или миллион просмотров?» Если...
Adblock detector